a2 United States Patent

Adoc, Jr. et al.

US009411872B1

US 9,411,872 B1
*Aug. 9,2016

(10) Patent No.:
(45) Date of Patent:

(54) MANAGEMENT OF APPLICATION STATE

(71)

(72)

(73)

")

@
(22)

(63)

(1)

(52)

DATA

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

Amazon Technologies, Inc., Seattle, WA
us)

Mario Vargas Adoc, Jr., San Francisco,
CA (US); Richard David Krog, Seattle,
WA (US); Christopher Lawrence
Lavin, Seattle, WA (US); Jeremy
Stephen Hynoski, Seattle, WA (US)

Amazon Technologies, Inc., Seattle, WA
us)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

15/000,396

Jan. 19, 2016

Related U.S. Application Data

Continuation of application No. 13/921,503, filed on
Jun. 19, 2013, now Pat. No. 9,244,993.

Int. Cl1.

GO6F 17/30 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ... GO6F 17/30581 (2013.01); HO4L 67/1095

(2013.01); HO4L 67/2842 (2013.01)

(58) Field of Classification Search
CPC GOG6F 17/30174; GOGF 17/3048; GO6F
17/30575; Y10S 707/99941
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,734,255 B2* 5/2014 vanOs A63F 13/10
463/42

9,244,993 B1* 12016 Adoc,Jr. GO6F 17/30575
2010/0279774 Al* 11/2010 Braigcccoovninine AG63F 13/12
463/40

2014/0187315 Al* 7/2014 Perryccocevvvvninine A63F 13/10
463/29

OTHER PUBLICATIONS

U.S. Appl. No. 13/921,735, filed Jun. 19, 2013 and entitled
“Idempotency of Application State Data”.

U.S. Appl. No. 13/850,119, filed Mar. 25, 2013 and entitled
“Resovling Conflicts Within Saved State Data”.

* cited by examiner

Primary Examiner — Cheryl Lewis
(74) Attorney, Agent, or Firm — Thomas| Horstemeyer, LLP

(57) ABSTRACT

Disclosed are various embodiments for synchronizing appli-
cation state information across devices. More specifically,
embodiments of the disclosure are related to generating and
storing of application state information. Key-value pairs are
stored on a client device and synchronized with an application
synchronization service.

20 Claims, 5 Drawing Sheets

Application Marketplace
System 212

Application
Synchronization Service
221

Computing Envirenment 203

Data Store 212

Saved State Data 234

pplication Markatplaz:e']=

Application State
Update 245

Application State

Information 241

Client Device 103

Client Device Storage 260

Application 233

Application State
Cache 243

Application State Storage 261
Key 263
Value 265

Status Flag 268

U.S. Patent Aug. 9,2016 Sheet 1 of 5 US 9,411,872 B1

105a

]
4 : // Y 100
POWER: * % Score: 85 TIME: 4:43 /

103a

[
\

NN

//;/;/;

105b
4 D
103b Score: 91 ——-—"’/
N ‘(JOO
v
. J

FIG. 1B

U.S. Patent Aug. 9,2016 Sheet 2 of 5 US 9,411,872 B1

Computing Environment 203

/\
~
Data Store 212
Application Marketplace | Applications 233
System 219 b
Saved State Data 234
Key 255 '
Application Value 257
Synchronization Service |¢—» ;
221 Application Marketplace
Data 235
¥/

| }

Application State Network
Update 245 209

Application State

Information 241

/ \
Client Device 103 —]
Client Device Storage 260
Application 233 Application State Storage 261
' Key 263 '
Application State | [€—»} |
Cache 243 Value 265
Status Flag 268
\—/

FIG. 2

U.S. Patent Aug. 9,2016 Sheet 3 of 5 US 9,411,872 B1

301

Execute Application within Client Device -/

300
Event Occurring

within Application Corresponding
to Synchronized Event?

Generate Value Corresponding to Event d

307 \ 4

\ Store Value Corresponding to Event to Application
State Cache

309 ’

\ Impose Waiting Period

311
Additional Event
Occurrence?

313

\ Write Application State Cache to Application State |

Storage

315

\ Y

Impose Waiting Period

v

316

Additional State Data?

317

FIG. 3

U.S. Patent Aug. 9,2016 Sheet 4 of 5 US 9,411,872 B1

401

Execute Application within Client Device ‘J 400

X 403 /

Synchronization Event?

405

\. Identify Changed Values within Application State
Storage Based Upon Status Flag

407 \ 4

K Generate Application State Information Including
Changed Values

409

A
K Transmit Application State Information to Application
Synchronization Service

FIG. 4

U.S. Patent

Aug. 9, 2016 Sheet 5 of 5

US 9,411,872 B1

Computing Environment 203

Computing Device(s) 500

Memory(ies) 506

Application Synchronization

Processor(s) Service 221
803 Data Store
212 Application Marketplace System
219
A A
. 509 v

FIG. 5

603

Processor(s)

Client Device 103

Memory(ies) 606

Application 233

Client Device Storage

260

US 9,411,872 Bl

1
MANAGEMENT OF APPLICATION STATE
DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of and claims the benefit
of U.S. patent application Ser. No. 13/921,503, entitled
“MANAGEMENT OF APPLICATION STATE DATA,” and
filed Jun. 19, 2013, issued as U.S. Pat. No. 9,244,993, which
is hereby incorporated by reference in its entirety.

BACKGROUND

Applications that are distributed via an application market-
place are often installed on multiple devices by a user. A
developer of an application may wish to synchronize state
information across the multiple installations across various
devices of a particular application. The state information is
generated by the various instances of the application execut-
ing on the client devices that are associated with a particular
user.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better under-
stood with reference to the following drawings. The compo-
nents in the drawings are not necessarily to scale, emphasis
instead being placed upon clearly illustrating the principles of
the disclosure. Moreover, in the drawings, like reference
numerals designate corresponding parts throughout the sev-
eral views.

FIGS. 1A-1B are drawings of example applications
executed by client devices according to various embodiments
of the present disclosure.

FIG. 2 is a drawing of a networked environment according
to various embodiments of the present disclosure.

FIG. 3 is a flowchart illustrating one example of function-
ality implemented as portions of an application executed in a
client device according to various embodiments of the present
disclosure.

FIG. 4 is a flowchart illustrating one example of function-
ality implemented as portions of an application executed in a
client device according to various embodiments of the present
disclosure.

FIG. 5 is a schematic block diagram that provides one
example illustration of a computing environment employed
in the networked environment of FIG. 2 according to various
embodiments of the present disclosure.

FIG. 6 is a schematic block diagram that provides one
example illustration of a client device employed in the net-
worked environment of FIG. 2 according to various embodi-
ments of the present disclosure.

DETAILED DESCRIPTION

The present disclosure relates to synchronizing data asso-
ciated with the state of an application between multiple
devices that may be associated with a user. Applications that
are distributed via an application marketplace are often
installed on multiple devices associated with a user account.
For example, a user may own a tablet device as well as a
smartphone and install an application distributed by the appli-
cation marketplace on both devices. Accordingly, embodi-
ments of the disclosure can facilitate synchronization of data
relating to the application across the various devices associ-
ated with the user by employing an application synchroniza-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion service to which applications report application state
information, which can in turn facilitate synchronization of
application state information across multiple devices of the
user.

When an application is a game application, application
state information can comprise, for example, information that
is related to game applications, such as scoring data, game
progress, game achievements, game timing information, time
stamps, and any other information relating to execution of a
game. Application state information can also related to media
such as books, movies, music, etc., that are rendered or con-
sumed via a media player application. In this scenario, the
application state information can relate to a page number
and/or time code within media that a user last viewed and/or
consumed. Application state information can also include
information related to an accumulated value, such as a report
indicating the user’s accumulation and/or usage or spending
of coins or points during a gameplay session. Therefore,
embodiments of the present disclosure provide mechanisms
for caching and storage of application state information on a
client device executing the application.

With reference to FIGS. 1A-1B, shown is an example
scenario in which an application executed by client devices
1034 and 1035. In the scenario 100 shown in FIGS. 1A-1B,
the application can be distributed by an application market-
place. Inthe example of FIGS. 1A-1B, the client devices 103a
and 1035 are associated with a particular user account. In
other words, the user or other entity has installed the same
application on multiple devices. An application synchroniza-
tion service can be associated with the application market-
place and/or independent from an application marketplace
and facilitates synchronization of game state data.

As shown in the example of FIG. 1A, an application
instance is executed by the client device 1034 can incorporate
functionality in which a user may utilize an account held with
a third party service for the purpose of tracking accumulation
of coins or points, tracking achievements, game progress,
game scores, or any other data related to the state of an
application that can be saved. Accordingly, an application can
be bundled with a software library and/or code fragments
related to an application marketplace and/or application syn-
chronization service that facilitate the creation of application
state information in a data structure that can be transmitted to
a synchronization service. As shown in the client device 1035
that is also associated with the user, another application
instance corresponding to the same application may be
executed by another device associated with the user.

Accordingly, each application instance may report, for
example, scoring information 105a, 10554 that is synchro-
nized across all instances of execution of the application that
are associated with a particular user account. Accordingly, as
shown in the scenario of FIGS. 1A and 1B, the user may earn
points in a gameplay session on a first device as well as on a
second device, with the scoring information being synchro-
nized across the devices of the user that is facilitated by
embodiments of the disclosure.

Accordingly, to facilitate such synchronization, applica-
tions may be instrumented to store information pertaining to
events that occur during execution of the application, such as
the accumulation of points, high scores, and other state infor-
mation as can be appreciated. Information about events can be
stored in the form of key-value pairs that are generated by the
application, stored locally within the client device 103, and
synchronized via an application synchronization service, as
will be described in further detail herein. In the following

US 9,411,872 Bl

3

discussion, a general description of the system and its com-
ponents is provided, followed by a discussion of the operation
of the same.

Turning now to FIG. 2, shown is a networked environment
200 according to various embodiments. The networked envi-
ronment 200 includes a computing environment 203 and one
ormore clients 103 in data communication via a network 209.
The network 209 includes, for example, the Internet, intra-
nets, extranets, wide area networks (WANs), local area net-
works (LANs), wired networks, wireless networks, or other
suitable networks, etc., or any combination of two or more
such networks.

The computing environment 203 may comprise, for
example, a server computer or any other system providing
computing capability. Alternatively, the computing environ-
ment 203 may employ a plurality of computing devices that
may be arranged, for example, in one or more server banks or
computer banks or other arrangements. Such computing
devices may be located in a single installation or may be
distributed among many different geographical locations. For
example, the computing environment 203 may include a plu-
rality of computing devices that together may comprise a
cloud computing resource, a grid computing resource, and/or
any other distributed computing arrangement. In some cases,
the computing environment 203 may correspond to an elastic
computing resource where the allotted capacity of process-
ing, network, storage, or other computing-related resources
may vary over time.

Various applications and/or other functionality may be
executed in the computing environment 203 according to
various embodiments. Also, various data is stored in a data
store 212 that is accessible to the computing environment
203. The data store 212 may be representative of a plurality of
data stores 212 as can be appreciated. The data stored in the
data store 212, for example, is associated with the operation
of the wvarious applications and/or functional entities
described below.

The components executed on the computing environment
203, for example, include an application marketplace system
219, application synchronization service 221 and other appli-
cations, services, processes, systems, engines, or functional-
ity not discussed in detail herein. The application marketplace
system 219 may communicate with the client device 103
using various protocols such as, for example, hypertext trans-
fer protocol (HTTP), simple object access protocol (SOAP),
representational state transfer (REST), real-time transport
protocol (RTP), real time streaming protocol (RTSP), real
time messaging protocol (RTMP), user datagram protocol
(UDP), transmission control protocol (TCP), and/or other
protocols for communicating data over the network 209.

The application marketplace system 219 is executed to
provide functionality relating to an application marketplace
in which a multitude of applications 233 may be submitted by
developers and made available for purchase and/or download
by users. The application marketplace system 219 may
include functionality relating to electronic commerce, e.g.,
shopping cart, ordering, and payment systems. The applica-
tion marketplace system 219 may support searching and cat-
egorization functionality so that users may easily locate
applications 233 that are of interest. The application market-
place system 219 may include functionality relating to veri-
fication of compatibility of applications 233 with various
clients 103.

The application synchronization service 221 is executed to
synchronize application state information 241 associated
with instances of applications 233 executed by various client
devices 103 that are associated with a user account. Applica-

20

30

40

45

55

4

tion state information 241 can include information relating to
application usage that is associated with an application
instance executed by a client device 103. For example, appli-
cation state information 241 can include a score or achieve-
ment achieved by a user in an application instance. Applica-
tion state information 241 can also include saved game data,
or a score, level, or other state information from which a user
may resume gameplay at a later point in time on the same
client device 103 or another client device 103.

The data stored in the data store 212 includes, for example,
applications 233, saved state data 234 relating to applications
233 that are executed by client devices 103, application mar-
ketplace data 235, and potentially other data. The applications
233 correspond to those applications 233 that have been
submitted by developers and/or others, for example, for inclu-
sion in the application marketplace. The application 233 may
correspond, for example, to a game or other types of applica-
tions. As non-limiting examples, the application 233 may
correspond to a first-person shooter game, an action game, an
adventure game, a party game, a role-playing game, a simu-
lation game, a strategy game, a vehicle simulation game,
and/or other types of games.

The application 233 may be a game originally designed for
execution in a general-purpose computing device or in a
specialized video game device such as, for example, a video
game console, a handheld game device, an arcade game
device, etc. The applications 233 may also correspond to
mobile phone applications, computer-aided design (CAD)
applications, computer-aided manufacturing (CAM) applica-
tions, photo manipulation applications, video editing appli-
cations, office productivity applications, operating systems
and associated applications, emulators for operating systems,
architectures, and capabilities not present on a consumer
device, and other applications and combinations of applica-
tions. Where game applications are mentioned in the follow-
ing text, it is understood that game applications are merely
examples of the many different types of applications 233.

The application 233, when executed by a client device 103,
may expect to access one or more resources of the client
device on which it is executed. Such resources may corre-
spond to display devices, input devices, or other devices. In
some cases, the application 233 may request exclusive access
to one or more of the resources, whereby no other applica-
tions may have access to the particular resources. Each appli-
cation 233 may include, for example, object code, binary
code, source code, metadata and/or other data. The object
code corresponds to code that is executable by clients 103,
either natively by a processor or by way of a virtual machine
executed by the processor.

The saved state data 234 that is maintained by the applica-
tion marketplace system 219 includes various data relating to
execution of applications 233 by client devices 103 that are
associated with a particular user account. For example, the
saved state data 234 may include one or more accumulated
totals, such as a coin balance or point balance, information
about progress of a user within execution of an application by
users, such as a level at which a user has progressed within a
game, scoring information, achievement information relating
to a game, etc. Saved state data 234 can be organized into
various keys 255 and corresponding values 257. Accordingly,
a key 255 can represent an event name of an event occurring
in an application 233 executed by a client device 103 that an
application developer may wish to synchronize across the
various devices of a user. The key 255 can also take the form
of an event name or event identifier that is combined with a
synchronization rule. The value 257 can represent the value
associated with the event, such as a coin balance, point bal-

US 9,411,872 Bl

5

ance, score, lap time, level, page number, or any other data
about application state that a developer wishes to synchronize
across the various devices of a user.

The data associated with the application marketplace data
235 includes, for example, download information, categories,
application usage data and/or other data. The download infor-
mation indicates the popularity, either in terms of absolute
number of downloads or in terms of relative popularity, of the
applications 233 offered by the application marketplace data
235. The download information can also identify users, either
individually by a user account and/or on an aggregate basis
according to demographic category, who have downloaded a
particular application 233. The categories correspond to
groupings of applications 233 that may indicate similar appli-
cations 233 and may be employed by users to more easily
navigate the offerings of the application marketplace data
235. Non-limiting examples of categories may include social
networking applications 233, mapping applications 233,
movie information applications 233, shopping applications
233, music recognition applications 233, and so on. The
application marketplace data 235 can also include informa-
tion about users, such as user profile data, user authentication
information, usage data of users with regard to application
233 (e.g., game progress, high scores, and achievements).

The application marketplace data 235 can also include
information about the various client devices 103 that are
registered to user accounts of the application marketplace
system 219. Accordingly, the application marketplace data
235 can relate a device identifier with a user account so that
the application synchronization service 221 may determine
which client device 103 corresponds to a given key 255 and/or
value 257 that is stored in the data store 212.

The client device 103 is representative of a plurality of
client devices that may be coupled to the network 209. The
clients 103 may be geographically diverse. The client device
103 may comprise, for example, a processor-based system
such as a computer system. Such a computer system may be
embodied in the form of a desktop computer, a laptop com-
puter, personal digital assistants, cellular telephones, smart-
phones, set-top boxes, music players, web pads, tablet com-
puter systems, game consoles, electronic book readers, or
other devices with like capability.

The client device 103 may include a display device. The
display may comprise, for example, one or more devices such
as cathode ray tubes (CRTs), liquid crystal display (LCD)
screens, gas plasma-based flat panel displays, LCD projec-
tors, or other types of display devices, etc. The client device
103 may include one or more input devices. The input devices
may comprise, for example, devices such as keyboards, mice,
joysticks, accelerometers, light guns, game controllers, touch
pads, touch sticks, push buttons, optical sensors, micro-
phones, webcams, and/or any other devices that can provide
user input. Additionally, various input devices may incorpo-
rate haptic technologies in order to provide feedback to the
user.

The client device 103 may be configured to execute various
applications 233 that are distributed via the application mar-
ketplace system 219. An application 233 executed by a client
device 103, as is noted above, can be instrumented to generate
data related to the occurrence of events during execution of
the application 233. The data generated by the application
233 can be synchronized by the application synchronization
service 221 across the various client devices 103 that are
registered to a particular user account. To this end, the appli-
cation 233 or a software library or other code fragment that is

10

15

20

25

30

35

40

45

50

55

60

65

6

invoked by the application 233 can generate a key and a value
that are associated with a particular event occurring within an
application 233.

The client device 103 is configured with an application
state cache 243 that can cache key-value pairs associated with
an event occurring within an application 233. The application
state cache 243 can be maintained and/or stored in memory.
The client device 103 is also configured with client device
storage 260, which can comprise a mass storage device such
as disk storage, flash memory storage, non-volatile memory,
or any other type of mass storage device. The client device
storage 260 includes application state storage 261, which can
store information pertaining to events occurring during
execution of an application 233. For example, the application
state storage 261 can store a key 263 that corresponds to a
particular event occurring within an application 233. Each
key 263 can also have a corresponding value 265 that repre-
sents a particular value associated with the event. Addition-
ally, the application can also be configured to generate a
timestamp that corresponds to an event occurring during
execution of the application 233. In some embodiments, the
application 233 can generate and/or set a status flag 268 that
corresponds to the event. The status flag 268 can indicate
whether a value 265 corresponding to a particularkey 263 has
changed since a most recent synchronization event.

The application state storage 261 can take the form of
various data structures, such as a map, hash table, tree, or any
other data structure in which key-value pairs or other data can
be stored. Accordingly, a key 263 and value 265 that are
generated and/or updated by the application 233 in response
to the occurrence of an event during execution of the appli-
cation 233 are first cached within the application state cache
243. Then, key-value pairs that are generated by the applica-
tion 233 and cached in memory within the application state
cache 243 are stored by the application 233 within the appli-
cation state storage 261 of the client device 103. The key 263
and value 265 can be stored in association with a timestamp as
well as potentially a status flag 268 that indicates whether the
key 263 and/or value 265 has been transmitted to the appli-
cation synchronization service 221 for storage in the data
store 212.

To transmit state information corresponding to an applica-
tion 233 to the application synchronization service 221, the
application 233 can generate application state information
241 that includes data related to one or more events occurring
within one or more applications 233 executed by the client
device 103 for transmission to the application synchroniza-
tion service 221. The application state information 241 can
comprise a data structure that includes data associated with an
event occurring during execution of an instance of one or
more applications 233. For example, application state infor-
mation 241 can include data related to an accumulated value,
such as a coin balance of a user, associated with execution of
the application 233 by a client device 103, a high score of a
user within a game application, game progress status of a user
related to a game application and any other events that might
be generated within the application 233 and which the appli-
cation 233 is instrumented to synchronize data with the appli-
cation synchronization service 221.

Various techniques relating to synchronization of applica-
tion state information are described in U.S. patent application
Ser. No. 13/850,119 entitled “RESOLVING CONFLICTS
WITHIN SAVED STATE DATA,” filed Mar. 25, 2013; and
U.S. Patent Application entitled “IDEMPOTENCY OF
APPLICATION STATE DATA,” filed Jun. 19, 2013; both of
which are incorporated herein by reference in their entirety.

US 9,411,872 Bl

7

Next, a general description of the operation of the various
components of the networked environment 200 is provided.
As noted above, an application 233 executing by a client
device 103 can be instrumented upon the occurrence of an
event during execution of an application instance to generate
application state information 241 containing information
about the event. For example, when a certain level and/or
achievement within a game application are reached, the appli-
cation 233 can generate information about the event, which
can be cached within the application state cache 243. As auser
reaches certain milestones or accomplishes tasks within an
application 233, the application 233 can be configured to
award coins, points, or any other reward balance. Addition-
ally, the user may spend these rewards to unlock portions of
an application 233 and/or obtain other rewards or items,
which cause a decrease in the accumulated total associated
with the user. As yet another example, the user’s progress
within a game application can also be tracked and application
state information 241 identifying scores, times (e.g., lap
times, time to complete levels, time to reach milestones, etc.)
or other state information associated with the application 233
can be generated.

The application 233 can generate application state infor-
mation 241 by utilizing a software library having an applica-
tion programming interface (API) provided by and/or asso-
ciated with the application synchronization service 221 so
that the application state information 241 can be created in a
standardized data format. In other embodiments, the applica-
tion 233 can be instrumented to generate application state
information 241 in a standardized data format.

The data format corresponding to application state infor-
mation 241 can be implemented as a text-based data inter-
change format, such as JavaScript Object Notation (JSON),
or any other standardized or proprietary data interchange
format that can allow for the exchange of structured data.
Accordingly, the application 233 executed by a client device
103 can generate and transmit application state information
241 to the application synchronization service 221, which can
extract and store the application state information 241 as
saved state data 234.

Application state information 241 may be transmitted by
the application 233 to the application synchronization service
221 asynchronously from multiple client devices 103 when a
particular client device 103 has the capability to transmit data
via the network 209. For example, the application 233 can
cache application state information 241 in the application
state cache 243 in the client device 103, transmit the applica-
tion state information 241 upon the occurrence of an event,
such as termination of the application, network 209 accessi-
bility, the reaching of a level and/or achievement within an
application, a size of the application state cache 243 and/or
application state storage 261 reaching a threshold size, after
the passage of a threshold amount of time since a most recent
generation and transmission of application state information
241 to the application synchronization service, or in response
to any other event or threshold. Application state information
241 can also be generated in real time as and when events are
generated within an application instance corresponding to the
application 233, or upon the occurrence of other events.

Accordingly, because a client device 103 may execute mul-
tiple applications 233 that employ the services the application
synchronization service 221, a software library invoked by
the application 233 may provide any or all of the functionality
described herein. Additionally, the application state cache
243 may be generated by such a software library and main-
tained in memory on the client device 103 for use by various
applications 233 executed by the client device 103. Similarly,

10

15

20

25

30

35

40

45

50

55

60

65

8

the application state storage 261 can be generated by such a
software library and maintained in the client device storage
260 for use by various applications 233 executed by the client
device 103.

Therefore, when an application 233 is executed by the
client device 103, an event may occur for which the applica-
tion 233 is instrumented to generate a corresponding key and
value (e.g., event name and event value). The application 233
can also generate a corresponding status flag and/or times-
tamp. As noted above, the status flag can indicate that the key
and value have been updated since a most recent synchroni-
zation with the application synchronization service 221, or a
“synchronization event.” The key, value and timestamp can
be initially stored in the application state cache 243 by the
application 233. Upon expiration of a predetermined waiting
period after storing of the data in the application state cache
243, the application 233 can then store the key 263, value 265
and status flag 268 in the application state storage 261. Some
applications 233 may be instrumented to generate multiple
events and corresponding key-value pairs within close tem-
poral proximity to one another. For example, upon comple-
tion of a level within a game application by a user, the appli-
cation 233 may be instrumented to generate various events
relating to scoring information, progress data, achievement
accumulation, and various other events associated with the
completion of a level and for which key-value pairs are gen-
erated within close temporal proximity.

Therefore, the predetermined waiting period allows mul-
tiple possible key-value pairs to be stored into the application
state cache 243 and in turn allows these key-value pairs to be
batch submitted to storage in the application state storage
261. Batch submission of key-value pairs from the applica-
tion state cache 243 can reduce resource consumption on the
client device 103 by potentially limiting numerous accesses
to the mass storage resources of the client device 103. The
predetermined waiting period can be, for example, 100 mil-
liseconds, or any other waiting period that provides a suffi-
cient buffer or waiting period for the application 233 to poten-
tially generate additional events and corresponding key-value
pairs. Additionally, in some embodiments the application 233
also stores a status flag 268 that provides an indication regard-
ing whether a given key 263 and/or value 265 was created,
changed or updated by the application 233 within the appli-
cation state storage 261 since a most recent synchronization
event.

The status flag 268 can have various possible values. For
example, the status flag 268 can have a value that corresponds
to a “synchronized” state. Such a state corresponds to a con-
dition in which the corresponding key 263 and value 265 do
not require synchronization with the application synchroni-
zation service 221. The status flag 268 can also have a value
that corresponds to a “dirty” state. Such a state corresponds to
a condition in which the corresponding key 263 and value 265
have been created and/or modified since a most recent syn-
chronization event. The status flag 268 can also have a value
that corresponds to a “synchronizing” state. Such a state
corresponds to a condition in which the corresponding key
263 and value 265 are in the process of being transmitted from
the client device 103 to the application synchronization ser-
vice 221. Therefore, when a given key-value pair is created
and/or updated, the status flag 268 can also be updated by the
application 233 to indicate that the key-value pair is in a
“dirty” state.

Should an additional event occur within the application
233 during the above-referenced waiting period and should
an additional key-value pair be generated during the prede-
termined waiting period, the additional key-value pair can

US 9,411,872 Bl

9

also be stored within the application state cache 243. In some
embodiments, the predetermined waiting period can be reset,
or restarted, by the application 233 when an additional event
occurs during the predetermined waiting period for which a
key-value pair is stored in the application state cache 243 by
the application 233.

The application 233 is also instrumented to periodically
report information related to its state (e.g., key-value pairs) in
the form of application state information 241. In some
embodiments, the application 233 can report information
about multiple events that are assembled into a data structure
that is presented in a data interchange format, such as JavaS-
cript Object Notation (JSON), and transmitted to the appli-
cation synchronization service 221 as application state infor-
mation 241. In some embodiments, the application 233 can
periodically generate and transmit application state informa-
tion 241 to the application synchronization service 221
according to a predefined schedule.

In other embodiments, the application 233 can generate
application state information 241 as and when key-value pairs
are stored in application state storage 261. In other embodi-
ments, the application 233 can generate application state
information 241 and transmit the application state informa-
tion 241 to the application synchronization service 221 upon
expiration of another predetermined waiting period that
begins when a given key 263 and value 265 are stored in the
application state storage 261. Should an additional key 263
and value 265 be stored within the application state storage
261 during the other predetermined waiting period, the addi-
tional key-value pair can also be included in an application
state information 241 data structure generated by the appli-
cation 233. In some embodiments, the predetermined waiting
period can be reset, or restarted, by the application 233 when
an additional key-value pair is stored in the application state
storage 261 during the other waiting period.

The application 233 can also be configured to generate
application state information 241 that only includes those
items (e.g., key-value pairs) that have changed since a most
recent synchronization with the application synchronization
service 221. In other words, the application state information
241 can be generated to include the items that have changed
since the most recent transmission of application state infor-
mation 241 to the application synchronization service 221.
Accordingly, the application can generate application state
information 241 that includes those items having a status flag
268 in a “dirty” state. The application 233 can exclude from
the application state information 241 those items having a
status flag 268 in a “synchronized” state, as these items do not
require synchronization with the application synchronization
service 221. Additionally, the application 233 can also
modify the status flag 268 of those items included within the
application state information 241 to a “synchronizing” state
until the application 233 transmits application state informa-
tion 241 including the items to the application synchroniza-
tion service 221 and/or receives a response from the applica-
tion synchronization service 221 indicating successtul receipt
of'the application state information 241, whereupon the appli-
cation 233 can then modify the status flag 268 of the items
corresponding to the application state information 241 to
“synchronized.” In this way, the application 233 can avoid
duplicate transmission of information about items to the
application synchronization service 221 during a subsequent
synchronization event.

Therefore, the application 233 and/or software library that
facilitates synchronization with the application synchroniza-
tion service 221 can identify those values 265 within the
application state storage 261 that have been created, updated

10

15

20

25

30

35

40

45

50

55

60

65

10

and/or changed since a most recent synchronization event and
generate application state information 241 that includes those
values 265 as well as other information, such as a timestamp,
key 263, synchronization rule, and other data. In some
embodiments, each time that the application 233 generates
and transmits application state information 241 to the appli-
cation synchronization service 221, the application 233 can
store a timestamp corresponding to when the synchronization
event occurred. Such a timestamp can be stored within the
client device storage 260. Therefore, the application 233 can
identify those values 265 that have changed within the appli-
cation state storage 261 since a most recent synchronization
event by identifying values 265 associated with a timestamp
that is later than the timestamp associated with the synchro-
nization event. In other embodiments, the application 233 can
identify those values 265 that have a status flag 268 that
corresponds to a “dirty” state.

Accordingly, the application can identify those items asso-
ciated with a status flag indicating that the key and/or value
has not been synchronized with the application synchroniza-
tion service 221 and include data relating to the key 263 and
value 265 in an application state information 241 that is
generated and transmitted to the application synchronization
service 221. When the application 233 obtains a response
from the application synchronization service 221 indicating
that information about a particular key 263 and/or value 265
corresponding to a “dirty” status flag 268 has been success-
fully received by the application synchronization service 221,
the application 233 can then modify the status flag 268 to
“synchronized.”

Referring next to FIG. 3, shown is a flowchart 300 that
provides one example of execution of an application 233
executed by a client device 103 to generate application state
information 241 or a portion of application state information
241. It is understood that the flowchart of FIG. 3 provides
merely an example of the many different types of functional
arrangements that may be employed to implement the opera-
tion of the portion of an application 233 as described herein.
As an alternative, the flowchart of FIG. 3 may be viewed as
depicting an example of steps of a method implemented in the
client device 103 that reports application state information to
the application synchronization service 221 for synchroniza-
tion of state information across multiple devices of a user
according to one or more embodiments.

First, in box 301, the application 233 executes functionality
associated with the application 233 in a client device 103. As
described above, the application 233 has been instrumented
by a developer to generate application state information 241
corresponding to events that the developer wishes to synchro-
nize across multiple devices associated with a user account.
In box 303, the application 233 determines whether an event
occurs during execution of the application for which data is
synchronized by the application synchronization service 221.
If so0, then in box 305, the application 233 generates a value
corresponding to the event. At box 307, the value correspond-
ing to the event is stored in the application state cache 243. As
noted above, the application state cache 243 can be main-
tained in memory of the client device 103. At box 309, the
application 233 imposes a waiting period to determine
whether additional events occur during execution of the
application 233 at box 311

Ifan additional event for which a value is generated occurs
during the waiting period, then the process returns to box 305,
where the additional value is also stored in the application
state cache 243. If no additional events occur during the
waiting period, then at box 313, the application state data
stored in the application state cache 243 is stored in the

US 9,411,872 Bl

11

application state storage 261. At box 315, another waiting
period is imposed while the application 233 determines
whether additional data is stored into the application state
storage 261 from the application state cache 243. If additional
state data is stored into the application state storage 261, then
the process returns to box 313. Otherwise, the application 233
may generate application state information 241 that is trans-
mitted to the application synchronization service 221.

Referring next to FIG. 4, shown is a flowchart 400 that
provides one example of execution of an application 233
executed by a client device 103 to generate application state
information 241 or a portion of application state information
241 by determining what items within application state stor-
age have changed and generating application state informa-
tion 241 corresponding to the items that have been modified
since a most recent synchronization event. It is understood
that the flowchart of F1G. 4 provides merely an example of the
many different types of functional arrangements that may be
employed to implement the operation of the portion of an
application 233 as described herein. As an alternative, the
flowchart of FIG. 4 may be viewed as depicting an example of
steps of a method implemented in the client device 103 that
reports application state information to the application syn-
chronization service 221 for synchronization of state infor-
mation across multiple devices of a user according to one or
more embodiments.

First, in box 401, the application 233 executes functionality
associated with the application 233 in a client device 103. At
box 403, the application 233 determines whether a synchro-
nization event occurs. As noted above, data can be synchro-
nized with the application synchronization service 221 peri-
odically, upon the occurrence of an event, upon the storage of
data with the application state storage 261, etc. At box 405,
the application 233 can identify the changed values within
application state storage based upon whether the timestamp
of a particular key 263 and/or value 265 indicates that a
previous synchronization event occurred before the value 265
was synchronized with the application synchronization ser-
vice 221. As noted above, the application 233 may also iden-
tify those items that have changed within application state
storage 261 by identifying those items that are associated
with a status flag 268 indicating that the items have not been
synchronized with the application synchronization service
221.

Atbox 407, the application 233 generates application state
information 241 that includes the values 265 and/or keys 263
as well as any other data related to the value 265 that have
changed since a most recent synchronization with the appli-
cation synchronization service 221. At box 409, the applica-
tion 233 transmits the application state information 241 to the
application synchronization service 221.

With reference to FIG. 5, shown is a schematic block
diagram of the computing environment 203 according to an
embodiment of the present disclosure. The computing envi-
ronment 203 includes one or more computing devices 500.
Each computing device 500 includes at least one processor
circuit, for example, having a processor 503 and a memory
506, both of which are coupled to alocal interface 509. To this
end, each computing device 500 may comprise, for example,
atleast one server computer or like device. The local interface
509 may comprise, for example, a data bus with an accom-
panying address/control bus or other bus structure as can be
appreciated.

Stored in the memory 506 are both data and several com-
ponents that are executable by the processor 503. In particu-
lar, stored in the memory 506 and executable by the processor
503 are the application marketplace system 219, application

10

15

20

25

30

35

40

45

50

55

60

65

12

synchronization service 221, and potentially other applica-
tions. Also stored in the memory 506 may be a data store 212
and other data. In addition, an operating system may be stored
in the memory 506 and executable by the processor 503.

With reference to FIG. 6, shown is a schematic block
diagram of the client device 103 according to an embodiment
of the present disclosure. The client device 103 includes at
least one processor circuit, for example, having a processor
603 and a memory 606, both of which are coupled to a local
interface 609. The local interface 609 may comprise, for
example, a data bus with an accompanying address/control
bus or other bus structure as can be appreciated. A display
may also be coupled to the local interface 609.

Stored in the memory 606 are both data and several com-
ponents that are executable by the processor 603. In particu-
lar, stored in the memory 506 and executable by the processor
603 are an application 233 and potentially other applications
and/or software. In addition, an operating system may be
stored in the memory 606 and executable by the processor
603.

Itisunderstood that there may be other applications that are
stored in the memory 506, 606 and are executable by the
processor 503, 603 as can be appreciated. Where any compo-
nent discussed herein is implemented in the form of software,
any one of a number of programming languages may be
employed such as, for example, C, C++, C#, Objective C,
Java®, JavaScript®, Perl, PHP, Visual Basic®, Python®,
Ruby, Flash®, or other programming languages.

A number of software components are stored in the
memory 506, 606 and are executable by the processor 503,
603. In this respect, the term “executable” means a program
file that is in a form that can ultimately be run by the processor
503, 603. Examples of executable programs may be, for
example, a compiled program that can be translated into
machine code in a format that can be loaded into a random
access portion of the memory 506, 606 and run by the pro-
cessor 503, 603, source code that may be expressed in proper
format such as object code that is capable of being loaded into
a random access portion of the memory 506, 606 and
executed by the processor 503, 603, or source code that may
be interpreted by another executable program to generate
instructions in a random access portion of the memory 506,
606 to be executed by the processor 503, 603, etc. An execut-
able program may be stored in any portion or component of
the memory 506, 606 including, for example, random access
memory (RAM), read-only memory (ROM), hard drive,
solid-state drive, USB flash drive, memory card, optical disc
such as compact disc (CD) or digital versatile disc (DVD),
floppy disk, magnetic tape, or other memory components.

The memory 506, 606 is defined herein as including both
volatile and nonvolatile memory and data storage compo-
nents. Volatile components are those that do not retain data
values upon loss of power. Nonvolatile components are those
that retain data upon a loss of power. Thus, the memory 506,
606 may comprise, for example, random access memory
(RAM), read-only memory (ROM), hard disk drives, solid-
state drives, USB flash drives, memory cards accessed via a
memory card reader, floppy disks accessed via an associated
floppy disk drive, optical discs accessed via an optical disc
drive, magnetic tapes accessed via an appropriate tape drive,
and/or other memory components, or a combination of any
two or more of these memory components. In addition, the
RAM may comprise, for example, static random access
memory (SRAM), dynamic random access memory
(DRAM), or magnetic random access memory (MRAM) and
other such devices. The ROM may comprise, for example, a
programmable read-only memory (PROM), an erasable pro-

US 9,411,872 Bl

13

grammable read-only memory (EPROM), an electrically
erasable programmable read-only memory (EEPROM), or
other like memory device.

Also, the processor 503, 603 may represent multiple pro-
cessors 503, 603 and/or multiple processor cores and the
memory 506, 606 may represent multiple memories 506, 606
that operate in parallel processing circuits, respectively. In
such a case, the local interface 509, 609 may be an appropriate
network that facilitates communication between any two of
the multiple processors 503, 603, between any processor 503,
603 and any of the memories 506, 606, or between any two of
the memories 506, 606, etc. The local interface 509, 609 may
comprise additional systems designed to coordinate this com-
munication, including, for example, performing load balanc-
ing. The processor 503, 603 may be of electrical or of some
other available construction.

Although the application marketplace system 219, appli-
cation synchronization service 221 and other various systems
described herein may be embodied in software or code
executed by general purpose hardware as discussed above, as
an alternative the same may also be embodied in dedicated
hardware or a combination of software/general purpose hard-
ware and dedicated hardware. If embodied in dedicated hard-
ware, each can be implemented as a circuit or state machine
that employs any one of or a combination of a number of
technologies. These technologies may include, but are not
limited to, discrete logic circuits having logic gates for imple-
menting various logic functions upon an application of one or
more data signals, application specific integrated circuits
(ASICs) having appropriate logic gates, field-programmable
gate arrays (FPGAs), or other components, etc. Such tech-
nologies are generally well known by those skilled in the art
and, consequently, are not described in detail herein.

The flowcharts of FIG. 3-4 show the functionality and
operation of an implementation of portions of the application
synchronization service 221 and/or application 233 executed
by a client device 103. If embodied in software, each block
may represent a module, segment, or portion of code that
comprises program instructions to implement the specified
logical function(s). The program instructions may be embod-
ied inthe form of source code that comprises human-readable
statements written in a programming language or machine
code that comprises numerical instructions recognizable by a
suitable execution system such as a processor 503, 603 in a
computer system or other system. The machine code may be
converted from the source code, etc. If embodied in hardware,
each block may represent a circuit or a number of intercon-
nected circuits to implement the specified logical function(s).

Although the flowcharts of FIG. 3-4 show a specific order
of execution, it is understood that the order of execution may
differ from that which is depicted. For example, the order of
execution of two or more blocks may be scrambled relative to
the order shown. Also, two or more blocks shown in succes-
sion in flowcharts of FIGS. 3-4 may be executed concurrently
or with partial concurrence. Further, in some embodiments,
one or more of the blocks shown in flowcharts of FIG. 3-4
may be skipped or omitted. In addition, any number of
counters, state variables, warning semaphores, or messages
might be added to the logical flow described herein, for pur-
poses of enhanced utility, accounting, performance measure-
ment, or providing troubleshooting aids, etc. It is understood
that all such variations are within the scope of the present
disclosure.

Also, any logic or application described herein, including
the application synchronization service 221, application 233,
or any other application or service, that comprises software or
code can be embodied in any non-transitory computer-read-

10

15

20

25

30

35

40

45

50

55

60

65

14

able medium for use by or in connection with an instruction
execution system such as, for example, a processor 503, 603
in a computer system or other system. In this sense, the logic
may comprise, for example, statements including instructions
and declarations that can be fetched from the computer-read-
able medium and executed by the instruction execution sys-
tem. In the context of the present disclosure, a “computer-
readable medium” can be any medium that can contain, store,
or maintain the logic or application described herein for use
by or in connection with the instruction execution system.
The computer-readable medium can comprise any one of
many physical media such as, for example, magnetic, optical,
or semiconductor media. More specific examples of a suitable
computer-readable medium would include, but are not lim-
ited to, magnetic tapes, magnetic floppy diskettes, magnetic
hard drives, memory cards, solid-state drives, USB flash
drives, or optical discs. Also, the computer-readable medium
may be a random access memory (RAM) including, for
example, static random access memory (SRAM) and
dynamic random access memory (DRAM), or magnetic ran-
dom access memory (MRAM). In addition, the computer-
readable medium may be a read-only memory (ROM), a
programmable read-only memory (PROM), an erasable pro-
grammable read-only memory (EPROM), an electrically
erasable programmable read-only memory (EEPROM), or
other type of memory device.
It should be emphasized that the above-described embodi-
ments of the present disclosure are merely possible examples
of implementations set forth for a clear understanding of the
principles of the disclosure. Many variations and modifica-
tions may be made to the above-described embodiment(s)
without departing substantially from the spirit and principles
of the disclosure. All such modifications and variations are
intended to be included herein within the scope of this dis-
closure and protected by the following claims.
Therefore, the following is claimed:
1. A method, comprising:
generating, in response to an occurrence of an event during
execution of an application by a client device, a key and
a value corresponding to the event;

storing, by the client device, the key and the value in an
application state cache stored in a memory of the client
device;
determining, by the client device, that at least one addi-
tional event occurs during the execution of the applica-
tion during a predetermined waiting period after storage
of the key and the value in the application state cache;

storing, by the client device, a second event and a second
value associated with the second event in the application
state cache;

storing, by the client device, the application state cache in

application state data stored in a mass storage device
associated with the client device after expiration of the
predetermined waiting period; and

transmitting, by the client device, the application state data

to an application synchronization service.

2. The method of claim 1, further comprising:

identifying, by the client device, a plurality of values in the

application state data that have changed since a previous
synchronization;

identifying, by the client device, a timestamp associated

with the previous synchronization; and

determining, by the client device, whether the timestamp

was generated after respective timestamps associated
with the event and the second event.

3. The method of claim 2, wherein identifying the plurality
of'values in the application state data that have changed since

US 9,411,872 Bl

15

the previous synchronization comprises identifying at least
one value associated with a respective status flag indicating
that the at least one value has changed since the previous
synchronization.

4. The method of claim 1, further comprising:

storing a third key and a third value associated with a third

event to the application state cache during a subsequent
predetermined waiting period;

updating the application state cache with the third key and

the third value;

updating the application state data in the mass storage

device with the third key and the third value upon expi-
ration of the subsequent predetermined waiting period;
and

transmitting the application state data to the application

synchronization service.

5. The method of claim 1, wherein transmitting the appli-
cation state data to the application synchronization service is
performed upon expiration of a second predetermined wait-
ing period.

6. The method of claim 5, wherein the second predeter-
mined waiting period is subsequent to the predetermined
waiting period.

7. The method of claim 1, further comprising resetting the
predetermined waiting period upon storage of the application
state cache in the mass storage device.

8. The method of claim 1, further comprising resetting a
synchronization status flag associated with respective values
within the application state data upon transmission of the
application state data to the application synchronization ser-
vice.

9. A system, comprising:

a client device;

an application executed by the client device, the applica-

tion configured to cause the client device to at least:

execute an application, the application generating a
value in response to occurrence of an event;

store the value within an application state cache in the
client device;

determine that an additional event has occurred during a
predetermined waiting period, the additional event
associated with a second value;

store the second value in the application state cache; and

store the value and the second value to application state
data in a mass storage device in the client device upon
expiration of the predetermined waiting period.

10. The system of claim 9, the application further causing
the client device to at least:

associate the value with a key and a first timestamp;

associate the second value with a second key and a second

timestamp; and

determine whether the value and the second value have

changed since a previous synchronization with an appli-
cation synchronization service based at least in part
upon the first timestamp and the second timestamp.

11. The system of claim 10, the application further causing
the client device to at least initiate transmission of the key, the
value, the second key, and the second value to an application
synchronization service upon expiration of an additional
waiting period.

12. The system of claim 11, the application further causing
the client device to at least reset a synchronization status flag
associated with respective values within the application state
data upon transmission of the application state data to the
application synchronization service.

13. The system of claim 11, the application further causing
the client device to at least set a synchronization status flag to

16

indicate that respective values have changed since a previous
synchronization in response to at least one event occurring
during execution of the application that change the respective
values.
5 14. The system of claim 9, the application further causing
the client device to at least:

store a third value to the application state cache during a

subsequent predetermined waiting period;

update the application state data in the mass storage device

with the third value upon expiration of the subsequent
predetermined waiting period; and

transmit the updated application state data to an application

synchronization service upon expiration of another sub-
sequent predetermined waiting period.

15. A non-transitory computer-readable medium embody-
ing a program executable on a client device, the program
causing the client device to at least:

execute an application, the application generating a value

in response to occurrence of an event;

store the value within an application state cache in a

memory of the client device;

determine that a second event has occurred during a pre-

determined waiting period, the second event associated
with an additional key and an additional value;

store the second value in the application state cache; and

store the value and the second value in application state

data in a mass storage device associated with the client
device upon expiration of the predetermined waiting
period.

16. The non-transitory computer-readable medium of
claim 15, wherein the program further causes the client
device to at least:

associate the value with a key and a first timestamp;

associate the second value with a second key and a second

timestamp; and

determine whether the value and the second value have

changed since a previous synchronization with an appli-
cation synchronization service based at least in part
upon the first timestamp and the second timestamp.

17. The non-transitory computer-readable medium of
claim 15, wherein the program further causes the client
device to at least reset the predetermined waiting period upon
storage of the application state cache in the mass storage
device.

18. The non-transitory computer-readable medium of
claim 15, wherein the program further causes the client
device to at least initiate transmission of the value and the
second value to an application synchronization service upon
expiration of an additional waiting period.

19. The non-transitory computer-readable medium of
claim 18, wherein the program further causes the client
device to at least reset a synchronization status flag associated
with respective values within the application state data upon
transmission of the value and the second value to the appli-
cation synchronization service.

20. The non-transitory computer-readable medium of
claim 15, wherein the program further causes the at least one
computing device to at least:

store a third value to the application state cache during a

subsequent predetermined waiting period;

update the application state data in the mass storage device

with the third value upon expiration of the subsequent
predetermined waiting period; and

transmit the updated application state data to an application

synchronization service upon expiration of another sub-
sequent predetermined waiting period.

20

25

40

45

55

#* #* #* #* #*

